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ABSTRACT

Singh, Rupesh Kumar. MSCE, Department of Computer Science and Engineering, Wright State
University, 2017. Distance Learning and Attribute Importance Analysis by Linear Regression on
Idealized Distance Functions.

A good distance metric is instrumental on the performance of many tasks including classification

and data retrieval. However, designing an optimal distance function is very challenging, especially

when the data has high dimensions. Recently, a number of algorithms have been proposed to learn

an optimal distance function in a supervised manner, using data with class labels. In this thesis we

proposed methods to learn an optimal distance function that can also indicate the importance of

attributes.

Specifically, we present several ways to define idealized distance functions, two of which involving

distance error correction involving KNN classification, and another involving a two-constant defined

distance function. Then we use multiple linear regression to produce regression formulas to represent

the idealized distance functions. Experiments indicate that distances produced by our approaches

have classification accuracy that are fairly comparable to existing methods. Importantly, our meth-

ods have added bonus of using weights on attributes to indicate the importance of attributes in the

constructed optimal distance functions.

Finally, the thesis presents importance of attributes on a number of datasets from the UCI

repository.

Keywords: Distance learning; move bad neighbors out; global class gap; two-constant distance;

weighted distance function; Euclidean; Manhattan
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1

Introduction

A good distance metric in high dimensional space is crucial for the real-world applications. Most of

the machine learning algorithms relying on a distance metric can be improved strikingly by learning

a good distance metric. For example, we want to classify images of faces by age and facial expression

based on class labels. The same distance function cannot be ideal for both the classifications even

though attributes for both the classifications remain same. So, a good distance metric plays an

important role in classification. For example, KNN (k-nearest neighbors) [Cover and Hart 1967], is

one of the widely used simple and effective algorithm for classification. It is a non-parametric and

supervised classification algorithm that employs class labels of training data to determine the class

of an unseen instance. Some research studies [Chopra et al. 2005] [Hastie and Tibshirani 1995] have

shown that KNN performance can be improved notably by learning a good distance metric. We also

used KNN to evaluate and test the accuracy of our weighted distance metric.

A number of research studies [Goldberger et al. 2004] [Tsang et al. 2003] [Weinberger et al. 2005]

[Xing et al. 2002] [Shalev-Shwartz et al. 2004] [Schultz and Joachims 2003] have shown that a good

distance metric can boost the performance of distant based algorithms. KNN and other distance

based algorithms often implement Euclidean to measure distance between two instances. To some

extent Euclidean distance metric works fine but with higher number of attributes it fails to mea-

sure the statistical regularities or underlying data distribution that might be present in the training

dataset. Along with it, Euclidean and Manhattan distance functions give equal weight of one to

every attribute present in the dataset and hence, they mislead the distance based on weight. Since

1
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2

most of the datasets nowadays have multiple attributes, the distance is dominated by the irrelevant

attributes present giving inaccurate results while employing Euclidean or Manhattan distance func-

tions. Here, in this thesis, we focus on choosing improved distance functions which can be applied

to almost all the distance based learning algorithms.

This thesis presents a novel method which develops idealized distance function and then uses

linear regression to determine weights for weighted Euclidean and weighted Manhattan distance func-

tions. Idealized distance is calculated based on two approach: error correction and Two-constant.

We have two approach named as: Global Class Gap (GCG) and Move Bad Neighbors Out (MBNO)

to accomplish our achievements for computation of idealized distance function through error correc-

tion.

In Chapter 3, we describe our error correction methods, Two-constant approach and distance

metric learning algorithms. In Chapter 4, we compare performance among our different methods

and also compared performance of our two winners methods with other popular methods. Along

with it, we give some insights on attribute importance and describe impacts of different parameters

on our methods.
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Preliminaries

Before we describe our approach and experimentation results, we briefly explain some basic termi-

nology that will guide us to understand our algorithms. This part introduces basic concepts related

to following topics.

• KNN

• Distance metric

• Linear regression

2.1 Distance Metric

There are different distance metrics used in the machine learning algorithms and in this thesis, we

are going to use Euclidean and Manhattan.

Euclidean distance metric is also known as L2 norm. Euclidean distance between points X and

Z is defined as:

f(X,Z) =

√√√√ n∑
i=1

(xi − zi)2

where X = (x1, ..., xn), Z = (z1, ..., zn) and n is number of attributes.

Manhattan distance metric is also known as rectilinear distance or L1 norm. Manhattan distance

between points X and Z is defined as:

f(X,Z) =

n∑
i=1

|xi − zi|

where X = (x1, ..., xn), Z = (z1, ..., zn) and n is number of attributes.

3
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2.2. KNN 4

The above mentioned distance metrics are used to measure similarities or differences between

two tuples based on distance. We will use the metrics to estimate weights for weighted Manhattan

and weighted Euclidean distance functions.

2.2 KNN

KNN [Cover and Hart 1967] is a supervised classification algorithm which uses closest k training

instances to determine class of a test instance. It defines the class of the test instance based on the

similarities measure by distance functions.

The test instance is classified by majority vote of its k closest neighbors such that the instance

being assigned to the most common class within its k nearest neighbors.

Let X1, X2, .., Xt be t training instances with n attributes and Z be a test instance whose class is

to be determined. Distances between Z and all the training instances are calculated using Manhattan

or Euclidean distance metric.

If we sort neighbors of Z based on distance then k nearest training instances determine class

of Z based on the majority votes. In the given Figure 2.1, 5 (k=5) nearest neighbors are chosen

to determine class of the test instance. Since, there are two Class 2 instances and three Class 1

instances, the test instance falls under Class 1 by the majority votes.

So, how is KNN going to help in our distance metric learning? Idealized distance in our approach

is computed based on KNN such that the k closest neighbors whose presence leads to error is corrected

by moving the neighbors to some distant away. It is also used to evaluate and test classification

Figure 2.1: Example for KNN
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accuracy of our methods.

2.3 Regression

Figure 2.2: Basic example of linear regression

Regression analysis is a statistical method that models and analyzes the relationship between

dependent variable (also called response) and a series of independent variables (also known as

predictors). It is often used in finance, weather and other disciplines that uses prediction and

forecasting.

There are many types of regression and linear regression is one of them. The regression with one

independent variable is known as simple linear regression whereas the regression with more than

one independent variables is known as multiple linear regression. In this thesis, we are going to use

multiple linear regression for our distance metric learning. Linear regression helps to understand and

examine how the value of dependent variable related to independent variable and which independent

variable plays a significant role in predicting dependent variable.

Figure 2.2 depicts a basic example of simplest linear regression where the points are modeled by
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2.3. REGRESSION 6

a baseline equation given as y = a ∗ x+ b, where x is independent variable, y is dependent variable,

a is regression coefficient (the slope of the line) and b is the intercept.

So, how is linear regression going to help in our distance function? Linear regression helps to

derive relationship between distance and the attributes. More importantly, it helps to give some

insights on the importance of attributes.
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3

Our Methods

In this chapter, we describe our error correction methods, the Two-constant approach and algo-

rithms.

Weighted distance function helps us to know the importance of each attribute by assigning cer-

tain weight to it. Higher weight will contribute more towards distance function and lower weight

will contribute lesser while zero weight has no significance in distance calculation. So, automated

weight calculation of attributes plays vital role in the distance metric learning.

Our main framework is to develop idealized distance functions and then use linear regression to

estimate weights for weighted Euclidean or weighted Manhattan distance functions. Applying linear

regression on the idealized distance gives a better framework for the distance metric learning with

improved distance function.

In our methods, we compute idealized distance based on three methods: 1) MBNO, 2) GCG

and 3) the Two constant approach (dist2C). MBNO takes KNN as the measure for ideal distance

computation. Since KNN classifies a test instance based on majority votes of the k closest training

instances, we give a true class label to the test instance by moving closest instances with different

class labels to some distance away. The computation of ideal distance by GCG is quite different from

MBNO: it aims at bringing same class instances closer and different class instances farther. The

Two-constant method computes ideal distance with a novel method where it defines the distance of

same class instances to be smaller than different class instances.

Figure 3.1 represents the basic framework of our method where LR is linear regression. Linear

regression is used to estimate weight of attributes for weighted Euclidean or weighted Manhattan

from the ideal distance computed by MBNO, GCG or the Two-constant method.

7
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3.1. USING REGRESSION TO REPRESENT DISTANCE FUNCTIONS 8

Figure 3.1: Using Ideal Distance to get Weighted Distance Function

3.1 Using regression to represent distance functions

Using regression to represent distance functions helps to approximate importance of each attribute

in computation of weighted distance function. To model an approximation of a distance function, a

training dataset for regression is required (representing a given distance function f) which is used

by linear regression to produce an approximate distance function of f .

This approximation is needed since the original distance function f may only be defined on the

training data, and cannot be applied to testing data directly. Using linear regression, we produce

an approximation of f which can be applied to testing data directly.

Given a training dataset D, a distance function f, training dataset for linear regression is given

as:

{(|x1 − z1|i, ..., |xd − zd|i, f(X,Z)) | X,Z ∈ D,X 6= Z,

X = (x1, ..., xd), Z = (z1, ..., zd), i ∈ {1, 2}}

In regression modeling terminology, the first d columns, namely |x1 − z1|i, ..., |xd − zd|i, are the

predictor (or input) variables, and the last column, namely f(X,Z), is the response (or output)

variable.

It is not easy to assign weight to each attribute of the dataset manually which will give some

better distance function. So, assigning weight to each attribute automatically is an important part

of weighted distance metric learning.
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Linear regression models a function which estimates weight for each attribute based on the

training dataset. The weighted distance function modeled by linear regression is defined as below:

A weighted distance norm f is given as

f(X,Z) =

(
n∑
d=1

wd|xd − zd|i
)1/i

where X = (x1, ..., xn), Z = (z1, ..., zn), wdis the weight of dthattribute, i ∈ {1, 2}

The weighted distance function assigns weight to each attribute of a dataset based on idealized

distance. The weight of an attribute is a real number which means that the attribute can have

positive, negative or zero weight.

Figure 3.2: Illustration of Weighted L1 norm

Figure 3.2 illustrates an example for weighted L1 norm. In the given figure, A depicts an example

of L1 norm where weight of each attribute is 1. Distances among 4 data points based on the distance

function 10 + |X2 −X1|+ |Y2 − Y1| is shown in the figure. Similarly, B is an example for weighted

distance function, 10 + |X2 −X1| − 2|Y2 − Y1|, where weight of second attribute is -2 and weight of

first attribute is 1. As we can see in the figure, second attribute plays vital role in determining the

distance between points.

As discussed earlier, negative weight tends to bring data points closer and the given Figure 3.2 is

an example. If we compare distance between A and B, we can see that there are changes in distances.

(9, 9) and (9, 5) have distance of 14 in A and 2 in B. Similarly (6, 8) and (6, 5) have distance of 13
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3.2. GETTING IDEALIZED DISTANCE BY ERROR CORRECTION (EC) 10

in A and 4 in B. If we compare these two pairs of points, we can see that the difference in second

attribute for (9, 9) and (9, 5) is 4 and for (6, 8) and (6, 5) is 3. The weighted distance is highly

influenced by the change in attributes. So, greater the change in attributes with negative weight,

more closer will be the data points. So, pair of points (9, 9) and (9, 5) is closer (or has smallest

distance) in B though having largest distance in A. Distance between pair of points (6, 5) and (9, 5)

remains same in both A and B, and the reason is that the second attribute does not change. So,

the influence of change in second attribute cannot be seen and the distance remains same.

The change in corresponding attributes directly influence the weighted distance based on the

weight of the attributes. The characteristic of positive, negative and zero weights are described

below:

• Positive weight: It adds to the total distance increasing the distance between data points.

• Zero weight: It will nullify the effect of an attribute on distance computation which means that

the weighted distance value is as if there was no such attribute in the dataset.

• Negative weight: It deducts to the total distance bringing the data points closer.

3.2 Getting idealized distance by error correction (EC)

In this section, we describe the concepts and algorithms for error correction. Error correction is

performed on instances to get the idealized distance which can be used by linear regression to model

a weighted distance function. We describe two algorithms for error correction named as: 1) MBNO

and 2) GCG.

MBNO computes ideal distance based on KNN classification whereas GCG, on the other hand,

assumes that minimum distance of different class tuples should be larger than maximum distance of

same class tuples. The error correction method is illustrated in Figure 3.3. As shown in Figure 3.3,

EC is error correction method and can be applied to L1 norm, L2 norm or the Two-constant (dist2C)

approach giving ideal distance.

These two methods are described below and are used for error correction while performing

experiments.
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Figure 3.3: Error correction Based Approach

3.2.1 Move Bad Neighbors Out (MBNO)

MBNO computes ideal distance based on KNN classification by modifying the distance whose pres-

ence leads to error. The instance leading to error is moved to some distance away where it’s presence

has no impact on KNN classification for that specific instance.

Since this method computes ideal distance for each two instances by KNN procedure, it may be

called as ”Local” method. This technique will improve the KNN classification accuracy and hence

provide linear regression with the ideal training dataset for approximating new distance function.

MBNO has two parameters: k for use in KNN classification, and ν for specifying how far to move

bad neighbors out.

For MBNO, error correction is performed in relation with KNN classification. The main idea is to

move bad neighbors, whose presence leads to errors in KNN classification, out of the neighborhoods

(that impacting KNN) by modifying certain distances. This correction modifies the given distance

function differently, depending on the class distribution of data points in the neighborhood. This

error correction has the potential to improve the KNN classification accuracy and hence the quality

of the distance function.

Let D denote the training data with classes and f the given distance function. Let f ′ denote the

resulting distance function after error correction.

For each X ∈ D, let Nk(X,D, f) denote the set of the k nearest neighbors of X in D under the

distance function f . A tuple W in D is a bad neighbor of X if W is in Nk(X,D, f) and X and W
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have different class labels.

Figure 3.4: Illustration of Move Bad Neighbors Out Method

For each X ∈ D, let BN(X) denote the number of bad neighbors of X. Error correction is

performed on the bad neighbors of X only if BN(X) ≥ k
#C , where #C denotes the number of

classes in D. (If BN(X) < k
#C then the classification on X is correct and hence there is no need to

perform error correction. Let Zν,X be the ν-th same class nearest neighbor of X. (In other words,

if we sort the same class neighbors of X in increasing order based on their distance from X, then

Zν,X is the νth in this order.)

We can now define f ′ as follows for all pairs involving X:

• f ′(X,Z) = f(X,Z) + f(X,Zν,X) for each bad neighbor Z of X, and

• f ′(X,Z) = f(X,Z) for each Z that is not a bad neighbor (including the case when Z is not a

neighbor) of X.

Intuitively, the bad neighbor Z is now further away from X than the νth same class neighbor of

X under the new function.

Figure 3.4 illustrates an example of Move Bad Neighbors Out. Target neighbors are the instances

which belong to same class as test instance whereas bad neighbors belong to different class. As shown

in the figure, we took ν as 5 and k as 5.

In the given figure there are three bad neighbors, and we need to perform error correction by

modifying the distances. The error corrected distance is determined by the value of ν which is taken

as 5 for this example. So, we move the bad neighbors such that they cross the second elliptical

boundary as shown in figure. The bad neighbors should be moved to a distance such that the error

corrected distance is larger than ν closest same class neighbors of the test instance. As we can see
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in the figure, ”After” shows the condition after moving of the bad neighbors. Dashed line shows the

new 5 nearest neighbors of the test instance and KNN classifies the test instance correctly.

3.2.2 Global Class Gap (GCG)

GCG does not employ KNN for computation of ideal distance but rather involve distribution of

dataset such that minimum distance among tuples from different class is larger than maximum

distance among tuples from same class. This method will calculate ideal distance function by

changing distance between instances that fail to satisfy above assumption.

The main assumption of this approach is to bring instances of same class closer and instances

of different class separated by large margin. This method is also known as ”Global” method as

it takes the entire training data to compute maximum distance among tuples of same class and

minimum distance among tuples of different class. The ideal distance is used by linear regression

for approximating new distance function.

The main idea of this approach is to modify the distance function so that minDCD is larger

than maxSCD by a certain margin (gap). Here, minDCD denotes the minimum distance among

tuples from different classes, and maxSCD denotes the maximum distance among tuples from the

same class.

Parameter for GCG is γ which denotes the desired gap between same class instances and different

class instances. Technically, let D denote the training data with classes and f the given distance

function. Let γ > 0 be a desired gap between minDCD and maxSCD. Let f ′ denote the resulting

distance function after error correction. Let maxSCD = max{f(X,Z) | X and Z in D where X

and Z belong to the same class}, and minDCD = min{f(X,Z) | X and Z in D where X and Z

belong to different classes}. [To avoid big influence by outliers, we removed around 1.5% outlier

distances when calculating maxSCD and minDCD.]

If minDCD is larger than maxSCD then there is no need to modify f ; we let f ′ = f in this

case. Otherwise, let µ = (1 + γ)maxSCDminDCD . Now, we define f ′ as follows (for distinct X,Z ∈ D):

• f ′(X,Z) = f(X,Z) if X and Z belong to the same class, and

• f ′(X,Z) = µf(X,Z) if X and Z belong to different classes.
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3.3 Getting idealized distance by Two-constant distance func-

tion (dist2C)

Two-constant approach takes the ideal assumption that distance among tuples from same class

should be smaller than distance among tuples from different class. It computes ideal distance so

that the distance can be used by linear regression to compute weights for weighted Euclidean or

weighted Manhattan distance functions.

This is a novel approach where we learn a distance metric by assigning one of the two constant

value for all distances between instances such that we provide a smaller constant value to distance

among tuples from same class and a larger constant value to distance among tuples from different

class. Given d1 and d2 be two constants such that d2 >d1, we define dist2C as follows:

• dist2C(X,Z)= d1 if X and Z belong to same class

• dist2C(X,Z)= d2 if X and Z belong to different class

Error correction on the Two-constant approach may not be necessary. Experimental results show

that the Two-constant distance functions that use linear regression are slightly different in perfor-

mance with the Two-constant following error correction. However, there are some cases where error

correction performs better than without error correction and the result is discussed in Chapter 4.

3.4 Algorithms

We will introduce two algorithms based on the starter function as Euclidean or Manhattan and the

Two-constant approach. These two algorithms are quite similar except for Step 1; the Two-constant

approach calls linear regression for approximation of dist2C before error correction.

Algorithm DL(Li Norm , EC Method):

Input: A training dataset D with class labels and a distance function f0 based on

Li norm.

1. Compute idealized distance through error correction (EC) on f0, generating

an improved distance function f1.

2. Call linear regression to generate a new distance (regression) function f ′1

approximating f1 with training data of the form as:
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{(|x1 − z1|i, ..., |xd − zd|i, f1(X,Z)) | X,Z ∈ D,X 6= Z}

where X = (x1, ..., xd), Z = (z1, ..., zd)

3. Return the last distance function f ′1 produced in Step 2.

Algorithm DL2C(Li Norm, EC Method):

Input: A training dataset D with class labels and the Two-constant distance

function dist2C involving Li norm. Two-constant

approach takes two constants d1 and d2 as input.

1. Call linear regression to generate a new distance function f0

approximating dist2C with training data of the form as:

{(|x1 − z1|i, ..., |xd − zd|i, dist2C(X,Z)) | X,Z ∈ D,X 6= Z}

where X = (x1, ..., xd), Z = (z1, ..., zd)

2. If EC is used then: Compute idealized distance through error correction (EC)

on f0 generating an improved distance function f1.

Else: Let f1 denoted by f0 and return f1.

3. Call linear regression to generate a new distance function f ′1

approximating f1 with training data of the form as:

{(|x1 − z1|i, ..., |xd − zd|i, f1(X,Z)) | X,Z ∈ D,X 6= Z}

where X = (x1, ..., xd), Z = (z1, ..., zd)

4. Return the last distance function f ′1 produced in Step 3.

Parameters of the algorithms are k for KNN, gap γ (for Global Class Gap), and ν (for Move Bad

Neighbors Out).

Ideal distance computation followed by linear regression in the above two steps may be repeated

using f ′1 in place of f0. In fact, these two steps can be repeated multiple times. Here we would divide

the original training dataset into several partitions, namely D1, ..., Dr; at the start, we use D1 as the

training data; in each repeat of two steps ideal distance computation followed by linear regression

we add a new Di to the training data. This has the potential of correcting modeling mistakes that

remain in the first (and subsequent) iterations.
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Experimental Results

This chapter will use experiments on a number of datasets to evaluate our proposed methods and

compare our methods against existing methods. Importantly, this chapter will discuss which methods

(combinations) perform the best, and show in what way Euclidean or Manhattan distance functions

should be improved. This chapter also gives some insight on attribute importance of datasets and

describes the impacts of parameters on our methods.

The accuracy of our methods has been tested with 15 different datasets downloaded from UCI

machine learning repository. Table 4.1 depicts summary of 15 different datasets. We have used

7 different datasets used in [Nguyen and Guo 2008] for comparison with popular metric learning

methods and 8 different datasets used in [Luan and Dong 2017] to evaluate our methods with

harder datasets. We have 10 different metric learning methods in addition to Euclidean and

Manhattan. The ten methods are DL(L1,GCG), DL(L1,MBNO), DL(L2,GCG), DL(L2,MBNO),

DL2C(L1), DL2C(L1,GCG), DL2C(1,MNBO), DL2C(L2), DL2C(L2,GCG) and DL2C(L2,MBNO).

These methods give weighted Euclidean or weighted Manhattan distance functions which is used by

KNN to evaluate the performance of our methods.

As shown in Table 4.1, we have included datasets of different number of attributes from 3 to 34,

having different class labels from 2 to 6 and varying size of dataset from 178 to 1000. We have cho-

sen these diverse datasets to evaluate our methods and analyze their performance. For comparison,

we include mean performance of an approach using 2 fold cross validation repeated 10 times. The

parameters k, γ and ν for our methods were chosen as 5, 0.8 and 10 respectively. For Two-constant

parameters, we chose d1 as 5 and d2 as 25. Table 4.2, Table 4.3, Table 4.4 and Table 4.5 show the

result of our 8 methods for datasets available in Table 4.1. Table 4.4 and Table 4.5 are the classifica-

tion accuracy of our methods with harder datasets (where significant improvement in performance

is rare with exception being breast cancer wisconsin). Table 4.6 shows the comparison between our

16
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two best methods with three popular methods.

Table 4.1: Summary of the datasets

Datasets Attributes Classes Size

Heart 13 2 270

Wine 13 3 178

Aust 14 2 690

German 24 2 1000

Dermatology 34 6 179

Balance Scale 4 3 625

Ionosphere 34 2 351

Breast Cancer Wisconsin 10 2 569

Habermans Survival 3 2 306

Diabetes 8 2 768

Statlog 13 2 270

Planning 13 2 182

Mammographic 5 2 961

ILDP 10 2 583

Congress 16 2 435
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Table 4.2: Part 1 - KNN classification accuracy of 5 different algorithms: Manhattan as Manh,

Euclidean as Euc, DL(L1,GCG) denoted by L1GCG, DL(L1,MBNO) denoted by L1MBNO and

DL(L2,GCG) denoted by L2GCG

Dataset Manh Euc L1GCG L1MBNO L2GCG

Heart 69.2 66.1 79.3 72.2 79.6

Wine 73.8 69.2 92.1 78.7 80.3

Balance Scale 81.6 82.7 84.6 84.6 85.1

Aust 70.6 68.7 83.2 74.4 77.5

German 65.7 69.1 73.1 73.0 70.7

Dermatology 80.5 78.3 88.0 85.8 86.6

Ionosphere 82.0 80.0 90.0 88.3 86.0

Average 74.79 73.44 84.32 79.57 80.82

Table 4.3: Part 2 - KNN classification accuracy of 5 different algorithms: DL(L2,MBNO) de-

noted by L2MBNO, DL2C(L1) denoted by 2CL1, DL2C(L1,MBNO) denoted by 2CL1MBNO,

DL2C(L2,MBNO) denoted by 2CL2MBNO and DL2C(L2) denoted by 2CL2

Dataset L2MBNO 2CL1 2CL1MBNO 2CL2 2CL2MBNO

Heart 67.4 80.7 79.6 80.4 80.4

Wine 77.5 92.1 92.7 89.3 91.6

Balance Scale 84.3 84.5 84.5 85.1 85.1

Aust 78.3 84.3 85.2 84.6 85.5

German 70.4 71.7 71.5 71.6 71.5

Dermatology 78.7 88.0 88.8 89.1 88.8

Ionosphere 84.0 86.6 87.5 80.9 81.5

Average 77.22 83.98 84.25 83 83.48
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Table 4.4: Part 1 - KNN classification accuracy of 5 different algorithms: Manhattan as Manh,

Euclidean as Euc, DL(L1,GCG) denoted by L1GCG, DL(L1,MBNO) denoted by L1MBNO and

DL(L2,GCG) denoted by L2GCG

Dataset Manh Euc L1GCG L1MBNO L2GCG

Breast Cancer Wisconsin 63.5 62.9 95.9 68.8 62.9

Habermans Survival 65.9 67.9 71.2 71.9 70.9

Diabetes 72.4 71.1 72.4 72.4 69.7

Statlog 63.6 62.9 63.3 63.3 62.2

Planning 61.5 64.3 68.7 63.2 65.9

Mammographic 73.5 73.7 75.9 78.1 77.0

ILDP 68.4 70.5 69.5 68.3 69.8

Congress 61.6 61.4 61.6 61.6 62.3

Average 66.3 66.83 72.31 68.45 67.58

Table 4.5: Part 2 - KNN classification accuracy of 5 different algorithms: DL(L2,MBNO) de-

noted by L2MBNO, DL2C(L1) denoted by 2CL1, DL2C(L1,MBNO) denoted by 2CL1MBNO,

DL2C(L2,MBNO) denoted by 2CL2MBNO and DL2C(L2) denoted by 2CL2

Dataset L2MBNO 2CL1 2CL1MBNO 2CL2 2CL2MBNO

Breast Cancer Wisconsin 74.2 96.7 96.9 96.7 96.6

Habermans Survival 69.3 72.2 71.9 70.3 68.3

Diabetes 71.1 73.0 72.8 72.8 72.3

Statlog 62.5 67.4 67.5 67.5 67.4

Planning 63.7 70.9 70.9 71.4 71.4

Mammographic 77.5 78.6 78.6 77.7 77.3

ILDP 70.5 71.2 71.2 70.8 70.8

Congress 61.4 61.6 61.6 61.6 61.6

Average 68.77 73.95 73.92 73.6 73.21
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4.1 Accuracy comparison among our different methods

In this section, we compare performance among our different methods based on a number of datasets.

The methods that we include for comparision involving L1 norm and L2 norm are DL(L1,MBNO),

DL(L1,GCG), DL(L2,GCG) and DL(L2,MBNO) and then, we identify the best method which does

not involve dist2C approach.

In this section, we also evaluate and compare our dist2C methods on 15 different datasets. We

performed experiments with both the error correction methods for each dataset and what we found

that GCG involving dist2C was poor in performance than other methods of dist2C. So, we have

excluded it in the comparison and have only used dist2C involving MBNO (error correction) for the

comparisons. Finally, we identify our best error correction method.

4.1.1 Comparison among different methods involving L1 norm

Table 4.2 and Table 4.4 compare different methods based on L1 norm named as: Manhattan,

DL(L1,GCG) and DL(L1,MBNO). DL(L1,MBNO) and DL(L1,GCG) perform better than Manhat-

tan in most of the datasets. If we compare the two methods with datasets listed in Table 4.2,

DL(L1,GCG) wins the competition in almost all the datasets.

We have included some more experiment results in Table 4.4 with some harder datasets. Though

there is some sort of competition between DL(L1,GCG) and DL(L1,MBNO) with datasets in Ta-

ble 4.4, winner based on average performance is again DL(L1,GCG). Hence, we can say that

DL(L1,GCG) is the best method based on L1 norm and performs consistently better and by good

margin of 4.75% on dataset listed in Table 4.2 and 3.86% on harder datasets listed in Table 4.4.

4.1.2 Comparison among different methods involving L2 norm

Here we compare and analyze different methods involving L2 norm. Table 4.2 and Table 4.3

show the performance of three methods named as: Euclidean, DL(L2,GCG) and DL(L2,MBNO).

DL(L2,GCG) and DL(L2,MBNO) consistently perform better than Euclidean. DL(L2,MBNO) was

better than DL(L2,GCG) on some datasets but DL(L2,GCG) wins the race by a margin of 3.4% on

many datasets.

If we compare their performance on harder datasets available in Table 4.4 and Table 4.5, the

result is quite different from above as DL(L2,MBNO) wins the race by small margin of 1.19%. Hence,

we can say that these two methods are slightly different in performance. However on the basis of

average performance, DL(L2,GCG) is the best method.
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4.1.3 Best method not involving dist2C approach

DL(L1,GCG) is the best method among methods involving L1 norm. The performance is quite

similar between DL(L2,MBNO) and DL(L2,GCG). So, if we compare among these three methods,

we can see that DL(L1,GCG) performs better than other two methods in almost all of the datasets.

DL(L1,GCG) wins the race by large margin even with harder datasets. DL(L1,GCG) is better

than DL(L2,GCG) by 3.5% on dataset in Table 4.1. It is also better than DL(L1,MBNO) by margin

of 3.54% on harder datsets. With all the comparisons above, we can finally say that DL(L1,GCG)

is the best method among all the methods based on L1 norm and L2 norm without involving dist2C

approach.

4.1.4 Comparison among different methods of Two-constant involving L1

norm

Table 4.3 presents results of different methods of dist2C based on L1 norm. Though DL2C(L1,MBNO)

is better than DL2C(L1) by small margin of 0.27%, there were some datsets like german and heart

where DL2C(L1) performed better.

The case is quite different with harder dataset listed in Table 4.5 where DL2C(L1) lead by small

margin of 0.03%. Hence, we can say that both the methods are almost equal in performance. On

the basis of average performance, DL2C(L1,MBNO) is the best method.

4.1.5 Comparison among different methods on Two-constant involving

L2 norm

DL2C(L2,MBNO) and DL2C(L2) performed better than Euclidean on most of the datasets. Though

DL2C(L2,MBNO) is better than DL2C(L2) by 0.48%, we cannot draw a conclusion stating that

DL2C(L2,MBNO) is always better.

There are many cases where DL2C(L2,MBNO) did not improve performance of the datasets like

dermatology, heart, balance scale and german as shown in Table 4.3. If we see the results with

harder datsets listed in Table 4.5, DL2C(L2) wins the battle in most of the datasets by 0.39%. So,

we cannot be sure for a certain method will perform better every time as the performance of both

the methods are quite similar. However on the basis of average performance, DL2C(L2,MBNO) is

the best method.
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4.1.6 Accuracy comparison between MBNO and GCG

In this part we compare between two error correction methods based on the results in different

tables. If we take L1 norm or L2 norm as starter function then GCG performed better than MBNO

on the basis of average performances.

If we take dist2C approach, MBNO is better than GCG by significant margin.

4.2 Top two winners (best) methods

In this section we will identify two best methods among our methods. Almost all of our meth-

ods enhanced the performance consistently by significant margin in comparison with Euclidean or

Manhattan. They performed better with most of the datasets in Table 4.1.

Two-constant approach was the most consistent which outplayed most of the other methods

involving L1 norm or L2 norm as the starter function except DL(L1,GCG). It turned out that

DL(L1,GCG) was almost equal in performance with methods based on dist2C approach.

After all the comparisons above, we elected two best methods from our methods. There were

small margin (0.07%-1.61%) of performance differences among different methods involving dist2C

and DL(L1,GCG). So, it was not easy to choose the top two best methods as any addition of dataset

may change the top two winners.

However, on average performance of top 7 datasets in Table 4.1, DL(L1,GCG) is the first best

method and DL2C(L1,MBNO) is the second best method.

4.3 Accuracy comparison between our two best methods and

some popular metric learning methods

This part deals with accuracy comparison between our two best methods and other popular metric

learning methods: Large Margin Nearest Neighbor(LMNN) [Weinberger et al. 2005] and Information-

Theoretic Metric Learning(ITML) [Davis et al. 2007]. In addition, we include non-metric learning

method SVM [Crammer and Singer 2001] to compare with our existing methods.

Though most of our methods performed significantly better with most of the datasets, only few

were competitive with the three popular methods. DL(L1,GCG) and DL2C(L1,MBNO) were the

two best methods which consistently performed better with different datasets and we elected them

to compare. For comparison of our two best methods with 3 popular methods, we are going to take
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7 data sets downloaded from UCI machine learning repository. Table 4.1 depicts summary of the 7

datasets.

Table 4.6: Classification accuracy of 5 different algorithms: DL2C(L1,MBNO) denoted by

2CL1MBNO, DL(L1,GCG) denoted by L1GCG, Large Margin Nearest Neighbor (LMNN),

Information-Theoretic Metric Learning (ITML) and Support Vector Machine (SVM)

Dataset LMNN ITML SVM L1GCG 2CL1MBNO

Heart 81.5 80.1 73.2 79.3 79.6

Wine 72.7 95.0 82.5 92.1 92.1

Balance Scale 85.7 88.9 98.2 84.6 84.5

Aust 71.9 82.2 75.0 83.2 85.2

German 69.8 72.5 74.5 73.1 71.5

Dermatology 95.1 96.0 97.5 88.0 88.8

Ionosphere 89.0 84.5 91 90 87.5

Average 80.81 85.6 84.55 84.32 84.25

Table 4.6 shows the performance of the two best methods with three popular methods for 7

different datasets. From Table 4.6, it is clear that the above three popular methods (LMNN,

ITML,and SVM) clearly perform better with most of the datasets. On average DL(L1,GCG) and

DL2C(L1,MBNO) performed better than LMNN (by margin of 3.44%-3.51%) but was slightly poor

than ITML (by margin of 1.28%-1.35%) and SVM(by 0.23%-0.3%).

Though ITML and SVM win the competition by small margin, our methods performed better

than ITML or SVM on some of the datasets. Our methods performed better than SVM with datasets

like heart, wine and aust. Similarly, our methods performed better than ITML with datasets like

aust, german and ionosphere. So, our methods perform better on some datasets where other methods

fail to perform good.

4.4 Insights on Attribute Importance (Weight)

In this section, we talk about insights on importance of attributes. As we have discussed earlier

that the weight of an attribute can be positive, negative or zero. Here, we rank the attributes based

on their weight change. We performed experiments where we computed percentage of each weight

based on total weight of the attributes. Then we computed accuracy change and percent change
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for corresponding attributes of two different methods. The comparison was done between our best

methods and the corresponding L norm.

Table 4.7: Top 2 positive big change attributes and top 2 negative big change attributes

Dataset Positive Big Change Negative Big Change

Balance Scale A3, A1 A2, A4

Heart A9, A12 A6, A10

Wine A11, A12 A6, A9

Congress A8, A11 A5, A3

Breast Cancer Wisconsin A7, A3 A1, A10

Aust A8, A9 A12, A1

German A19, A21 A15, A18

Planning A10, A4 A11, A6

Statlog A1, A5 A6, A12

Diabetes A1, A2 A3, A5

Dermatology A31, A15 A30, A23

Ionosphere A1, A3 A13, A19

The available attributes name for some datasets are given as follows:

Balance Scale: A3 (Right Weight), A1 (Left Weight), A2 (Left Distance), and A0 ( Right Distance)

Heart: A9 (Exercise induced angina), A12 (Number of major vessels (0-3) colored by flourosopy),

A6 (fasting blood sugar >120 mg/dl) and A10 (ST depression induced by exercise relative to rest)

Wine: A11 (Hue), A12 (OD280/OD315 of diluted wines), A6 (Total phenols and A9:

Proanthocyanins)

Congress: A8 (aid-to-nicaraguan-contras), A11 ( synfuels-corporation-cutback), A5

(el-salvador-aid) and A3 (adoption-of-the-budget-resolution)

Breast Cancer Wisconsin: A7 (Bare Nuclei), A3 (Uniformity of Cell Size), A1 (Sample code

number) and A10 (Mitoses)

We rank the attributes into two categories: positive big change attributes and negative big change

attributes . Positive big change attributes are those attributes which have big positive weight change

and add to the total distance. Negative big change attributes are those attributes which have big

negative weight change and deduct from the total distance. They bring tuples closer than before. In
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this part, we find the top 2 positive big change attributes and top 2 negative big change attributes

for some datasets in Table 4.1.

Table 4.7 presents top two positive big change attributes and top two negative big change at-

tributes of different datasets available in Table 4.1.

Table 4.8: Impact of different values of γ on GCG

Dataset Method γ (0.2) γ(0.8) γ(2.0) γ(5.0)

Wine L2GCG 76.4045 75.8427 66.2921 61.236

Wine L1GCG 92.1348 92.1348 91.0112 90.4494

Wine 2CL1GCG 92.1348 92.1348 91.0112 90.4494

Wine 2CL2GCG 76.4045 75.8427 66.8539 61.7978

Planning L2GCG 64.8352 65.3846 65.9341 65.9341

Planning L1GCG 64.8352 65.3846 67.5824 67.5824

Planning 2CL1GCG 64.8352 65.3846 67.033 68.1319

Planning 2CL2GCG 64.8352 65.3846 65.9341 65.9341

Heart L2GCG 83.3333 83.3333 82.2222 81.8519

Heart L1GCG 82.2222 82.5926 82.2222 82.2222

Heart 2CL1GCG 82.2222 82.5926 82.2222 82.2222

Heart 2CL2GCG 83.3333 83.3333 82.2222 81.8519

Habermans survival L2GCG 67.6471 67.6471 67.6471 67.9739

Habermans survival L1GCG 68.6275 68.6275 68.6275 68.6275

Habermans survival 2CL1GCG 68.6275 68.6275 68.6275 68.6275

Habermans survival 2CL2GCG 67.6471 67.6471 67.9739 67.9739

Breast cancer wisconsin L2GCG 94.32 94.32 94.32 94.32

Breast cancer wisconsin L1GCG 93.5622 94.7067 95.7082 95.9943

Breast cancer wisconsin 2CL1GCG 93.5622 94.7067 95.7082 95.9943

Breast cancer wisconsin 2CL2GCG 94.32 94.32 94.32 94.32

Note: DL(L1,GCG) denoted by L1GCG, DL(L2,GCG) denoted by L2GCG, DL2C(L1,GCG)

denoted by 2CL1GCG and DL2C(L2,GCG) denoted by 2CL2GCG
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Table 4.9: Impact of different values of ν on MBNO

Dataset Method ν(5) ν(10) ν(15)

Heart L2MBNO 66.2963 82.5926 81.4815

Heart L1MBNO 71.4815 82.2222 82.2222

Heart 2CL1MBNO 82.2222 82.2222 82.2222

Heart 2CL2MBNO 82.5926 82.2222 81.4815

Wine L2MBNO 70.2247 94.9438 94.9438

Wine L1MBNO 71.9101 96.0674 96.0674

Wine 2CL1MBNO 96.0674 96.0674 96.0674

Wine 2CL2MBNO 94.9438 94.9438 94.9438

Planning L2MBNO 63.7363 71.4286 71.4286

Planning L1MBNO 60.989 71.4286 71.4286

Planning 2CL1MBNO 71.4286 71.4286 71.4286

Planning 2CL2MBNO 71.4286 71.4286 71.4286

Habermans survival L2MBNO 66.6667 68.6275 68.6275

Habermans survival L1MBNO 66.9935 66.3399 66.6667

Habermans survival 2CL1MBNO 66.3399 66.3399 66.9935

Habermans survival 2CL2MBNO 67.9739 68.6275 68.3007

Breast cancer wisconsin L2MBNO 53.7911 95.9943 95.9943

Breast cancer wisconsin L1MBNO 64.8069 95.422 95.422

Breast cancer wisconsin 2CL1MBNO 95.422 95.422 95.422

Breast cancer wisconsin 2CL2MBNO 96.1373 95.9943 95.9943

Note: DL(L1,MBNO) denoted by L1MBNO, DL(L2,MBNO) denoted by L2MBNO,

DL2C(L1,MBNO) denoted by 2CL1MBNO and DL2C(L2,MBNO) denoted by 2CL2MBNO

4.5 Impact of parameters on our methods

In this section, we describe the impact of our various parameters on our methods. We have chosen

γ and ν to discuss in this section. Since these parameters depend on the user, we need to know its

impact on the performance. We have chosen 4 different values of γ and 3 different values of ν. We

tested the result on 5 different datasets taking k as 5 and d1 for same class distance as 5 and d2 for

different class distance as 25.



www.manaraa.com

4.6. CHECKING THE CONSISTENCY OF OUR METHODS 27

After analyzing Table 4.8 , we can say that GCG performs better when the value of γ is 0.2 or

0.8. With the increasing value of γ, there is some sudden drop in performance for some methods.

After analyzing Table 4.9, we can say that MBNO performs better with larger value of ν. ν=5

did not give better result in comparison with other larger values. After all the discussions, we can

say that 2 ∗ k is the optimum value for ν as a parameter of MBNO.

4.6 Checking the consistency of our methods

In this section, we performed experiments on different datasets using 5 folds cross validation so that

we can evaluate the consistency of our methods. Table 4.10 and Table 4.11 show the result of our

different methods. In the tables, the result is in the form of num1 ± num2 where num1 is the

mean classification accuracy in percentage and num2 is the deviation of accuracy in percentage.

num1± num2 shows that the result varies from num1− num2 to num1 + num2. From the tables,

we can say that our methods were quite consistent. However, DL(L1,GCG) was the most consistent

among our different methods.

Table 4.10: Part 1 - KNN classification accuracy of 6 different algorithms: Manhattan as

Manh, Euclidean as Euc, DL(L1,GCG) denoted by L1GCG, DL(L1,MBNO) denoted by L1MBNO,

DL(L2,MBNO) denoted by L2MBNO and DL(L2,GCG) denoted by L2GCG

Dataset Manh Euc L1GCG L1MBNO L2GCG L2MBNO

Wine 73±5 70±8 92±5 75±6 76±10 76±9

Aust 71±4 71±4 79±4 74±4 74±4 79±3

Heart 70±4 67±5 77±4 71±3 79±8 67±7

Balance scale 81±4 82±2 84±2 86±4 84±2 86±3

German 67±2 68±3 72±2 70±4 70±3 69±1

Planning 65±7 63±8 64±4 65±5 64±7 63±7

Diabetes 72±2 70±3 72±1 72±2 72±3 70±5
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Table 4.11: Part 2 - KNN classification accuracy of 6 different algorithms: DL2C(L1) denoted

by 2CL1, DL2C(L1,MBNO) denoted by 2CL1MBNO, DL2C(L1,GCG) denoted by 2CL1GCG,

DL2C(L2,GCG) denoted by 2CL2GCG, DL2C(L2,MBNO) denoted by 2CL2MBNO and DL2C(L2)

denoted by 2CL2

Dataset 2CL1 2CL1GCG 2CL1MBNO 2CL2 2CL2GCG 2CL2MBNO

Wine 92±2 92±2 92±3 94±3 76±7 94±3

Aust 83±2 79±6 84±2 85±3 74±4 84±2

Heart 81±10 77±7 81±7 82±8 79±5 83±7

Balance scale 84±2 84±2 84±2 85±2 84±1 85±2

German 71±1 72±2 71±1 70±1 70±3 70±1

Planning 70±3 64±5 70±3 71±2 64±10 71±2

Diabetes 73±2 72±1 73±2 74±3 72±5 73±4
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Related Work

Distance metric learning has been an active area of research and it is not practical to include and

discuss all the related works. So, in this chapter we briefly review most related representatives on

this topic.

The recent proposed metric learning method [Weinberger et al. 2005] LMNN targets to bring

same class neighbors of KNN closer while different class neighbors are separated by large margin.

It incorporates Mahalanobis distance metric by semidefinite programming to meet the requirements

for k-nearest neighbor classification (KNN).

LMNN used cost function to penalize large distances and small distances between class instances

and the cost function as an instance of semidefinite programming can be given as:

Minimize
∑
ij ηij(~xi − ~xj)

TM(~xi − ~xj) + c
∑
ij ηij(1− yil)εijl subject to:

• (~xi − ~xl)
TM(~xi − ~xl)− (~xi − ~xj)

TM(~xi − ~xj) ≥ 1-εijl

• εijl ≥ 0

• M ≥ 0.

where (~xi, ~yi) denote a training set with inputs ~xi ∈ Rd and class labels yi. ηij to indicate whether

input ~xj is a target neighbor of input ~xi, M = LTL, L : Rd → Rd, c is a positive constant (typically

set by cross validation) and slack variables (hinge loss) εijl for all pairs of differently labeled inputs.

The first term in the above expression penalizes large distance between target neighbors and

each input, and the second term penalizes small distances between each input and all other inputs

that have different class labels.

29
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Our idea is quite similar in spirit but different in formulas and technicality than that of LMNN

because we penalize only the small distance from test input with k-nearest neighbors which has dif-

ferent class labels than that of test input. We penalize small distances only when their presence leads

to KNN classification error. We have employed error correction method MBNO which performs the

above operation. We have two more approaches GCG and the Two-constant which is quite different

from LMNN. One more difference between our approach and LMNN is that we used Euclidean and

Manhattan for distance metric learning whereas LMNN used Mahalanobis distance metric.

One of the recent work, [Davis et al. 2007] presented an approach to learn a Mahalanobis dis-

tance function by information-theoretic approach. It formulates the metric learning problem by

minimizing the differential relative entropy between two multivariate Gaussians under constraints.

It uses techniques of minimizing the LogDet divergence subject to linear constraints. It considers

a relationship constraining the similarity and dissimilarity between pair of points. It considers two

points are similar if the Mahalanobis distance between them is smaller than a threshold value (upper

bound). Similarly, two points belong to different class labels if distance between them is larger than

a threshold value (lower bound). The main framework of learning the distance function is:

Given pairs of similar points denoted by S and pairs of dissimilar points denoted by D, the metric

problem is:

minA KL(p(x;A0)||p(x;A))

subject to

• dA(xi, xj) ≤ u (i, j) ∈ S,

• dA(xi, xj) ≥ l (i, j) ∈ D,

where Mahalanobis distance is defined as : dA(xi, xj) = (xi − xj)TA(xi − xj), (x1, ..., xn) are real

numbers and A is a positive definite matrix.

Distance between two Mahalanobis distance functions parametrized by A0 and A by relative

entropy between multivariate Gaussians:

KL(p(x;A0)||p(x;A))=
∫
p(x;A0)log p(x;A0)

p(x;A) dx

where p(x;A) = 1
Z exp(−

1
2dA(x, µ)) is the multivariate Gaussian.

Our work is inspired by similar spirit but our error correction part is more intuitive than ITML

method. We perform error correction (GCG) such that minimum distance among different class la-

bels should be larger than maximum distance among same class labels. Our method learns weighted

Euclidean or weighted Manhattan distance functions whereas ITML learns Mahalanobis distance
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functions.

In [Chopra et al. 2005], the authors presented a framework for training a similarity metric by

energy-based model (EBM). The authors formulate the loss function such that it penalizes large

distances among examples with the same label, and small distance among different class labels pairs.

”The method is applied to a face verification task. The learning process minimizes a discriminative

loss function that drives the similarity metric to be small for pairs of faces from the same person, and

large for pairs from different persons. The mapping from raw to the target space is a convolutional

network whose architecture is designed for robustness to geometric distortions. The system is tested

on the Purdue/AR face database which has a very high degree of variability in the pose, lighting,

expression, position, and artificial occlusions such as dark glasses and obscuring scarves.” In our

work, we learn the metric with similar essence but with different approach and formulas where we

penalize the large distance among different class labels as in GCG.
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Conclusion

This chapter summarizes our methods, experimental results and findings. It also discuss future

works for this thesis.

6.1 Summary

Distance metric learning is one of the widely used element of machine learning community and it’s

impact is effective and notable. In this thesis, we learn weighted distance function by applying linear

regression on idealized distance functions. Identifying the importance of attributes and assigning

weight to them uncovers optimal relationship between distance and the attributes.

This thesis introduced a novel method of weighted distance function learning using idealized

distance functions. The metric is trained with the goal that same class neighbors should be closer

(small distance) while different class neighbors separated by large distance. Chapter 3 presented

3 approach of ideal distance computation named as: Move Bad Neighbors Out (MNBO), 2)Global

Class Gap (GCG) and 3) Two-constant approach and two algorithms to perform our weighted

distance learning.

In chapter 4, we gave experimental results on 15 datasets to evaluate our different methods. We

used KNN to measure the effectiveness of our approach. Our experiments showed that our metric

learning methods performed better than LMNN. Though ITML and SVM were better than our

methods in performance, our methods performed better at some datasets. Finally we gave some

insights on the attributes importance of different datasets.

It is interesting to note that by applying linear regression to the idealized distance, we can get

better result. Linear regression on idealized distance performed better than some of the popular

methods. We can even say that KNN classification accuracy can improve if provided better distance

32
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metric. Similarly, any distance based classification or regression can improve if provided better

distance metric.

6.2 Future Work

In this work, we identified the potential of improving our weighted distance metric learning. Since we

used linear regression to learn our distance function, there is prospective for better distance metric

by employing better regression analysis. In [Dong and Taslimitehrani 2015], it has been shown

how a contrast pattern aided regression method (CPXR) can outperform state-of-the-art regression

methods by big margins. So, CPXR as a regression method can be used to learn distance metric

giving more competitive result.
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